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In the present paper problems of optimum (in the sense of high-speed
action) control of systems containing a linear basic part and correspond-
ing to certain basic types of restrictions on the controlling actions are
considered. Limit passages in the solutions are discussed which corres-
pond to the passages from one type of restrictions to another. On the
basis of these limit passages, approximate methods are described for the
computation of optimum trajectories and the construction of optimum
systems,

1. In this section the basic problems of optimum control considered in
the present paper are formulated.

Let the behavior of the phase coordinates x,(¢t) (i =1, ..., n) of a
control system be described by the differential equations

2 Az by S L e (1.1)
where
T={T, .0 ey, b={b, ... by}, e={e%..,e% f(a=1,...,n—1)

are n-dimensional vectors, A is an n x n matrix with constant elements
@i and n, £ {a =1, ..., n- 1) are scalar functions.

Given the initial conditions xg =1z, ..o, x5}, it is required to
find the functions n,, £,* (optimum control) in such a way that the point
x{t) = x(xe, t, Mg {{g&), moving along a trajectory of system (1.1},
where 7 = n,, {% = £%, reaches the origin of coordinates x = 0 in the
shortest possible time t = T® (T%being the optimum control time). It is
assumed that the (admissible) functions 5(t), £%(¢) @=1, ..., n-1)
and the coefficients of system {1.1) are restricted by one of the follow-
ing conditions:

Problem I. The coefficients ﬂBa =0(a=1, ..., n~1; B=1, ..., n)
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and n(t) is a piecewise smooth function restricted by the condition
fn() <<, R R (1.2)

Problem II. The functions p(t), £%(¢) (@ =1, ..., n~ 1) are continu-
ous and satisfy the condition

n—1
(ro+ Y Eror)<t,  o<i<r (13)
a=1 ’
Problem III. The function n(t) = d{ (t) is the Stieltjes differential
of another function { (t) which is bounded and restricted by the condition
o
\ laz 1<t )

(1]
the coefficients eﬁf =0(a=1, ..., n=1; B=1, ..., n).

Problem IV. The coefficients ef? = 0 (@ =1, ..., n~1; B=1, ...,n)
and n(t) is a continuous function restricted by the condition

°

(Vimo a”a*z)lm@, 1 < p<oo (1.5)
]

Problems I, II and IV are problems of optimum control with one steer-
ing function n. The condition (1.2) corresponds to a restriction on a
controlling action (force, current, stress, and so on) at each instant ¢
in the transitional process 0K t 70, The condition (1.4) is a restrict-
ion on the impulses of the controlling quantities*. To the condition (1.5)
for p = 2 corresponds a restriction on the energy (mean power) of the
control actions. It is interesting to consider this condition also for
other values of p ¢l 1,00) from the point of view of limit passages to the
Problems I (p » w)and III (p » 1).

* Also another problem which occurs in control theory can be reduced to
the problem of type III, namely the problem of construction of optimum
control actions for a system, described by the equation

n
Foidagm = D) egpE%EP (1.6)

a, B=1

n, n—1
2 é_._:,c_ + ay d z
de di™1

where the admissible control functions €% (a = 1, ..., n) are restricted
by the condition
TO

.

and ) P’  is a positive definite quadratic form.
@, B=1

S caps* (0 € (z)) dt <1 (1.7
=

@, L
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Problem II is a problem of optimum control with n controlling actions
restricted by the condition (1.3) at each instant t in the transitional
process 0 £ t £ 79, For sufficiently general assumptions Problem II
assumes smooth solutions qo(t). foa(t) contrary to Problem I, for which,
as a rule, the optimum steering qo(t) is a discontinuous function. It is
also of interest to investigate the 1limit passage from Problem II to
Problem I for eg® > 0 (@=1, ..., n—1; =1, ..., n). After the
justification of such a limit passage, by means of which we can approxi-
mate Problem I by Problem II with small es%, it is possible to construct
an approximate method for the solution of Problem I in terms of continuous
optimum controlling functions 7,(t) of Problem II.

The method applied below for the investigation of Problems I, II and
IV can also be used in the case of several controlling actions qa(t)
(@a=1, ..., r). However, in the present paper for the solution of
Problems I, II and IV we shall restrict ourselves to a single controlling
action n(t).

Problems of optimum control in the sense of rapid action have been con-
sidered by many authors (see, for example, [ 1-4] ). In this paper we
shall restrict ourselves to the problem for which the basic part of
system (1.1) [forn = 0, 6% =0 (@a= 1, ..., n= 1)] is linear. Problems
I to IV, and similar ones which can be reduced to them, can be considered
from a qnified point of view, indicated in the paper [5], provided these
problems are reduced to a single problem of functional analysis (L-problem
in abstract space, article IV, [ 6] ), considered for each of the Problems
I to IV in a specially selected functional space.*

Investigating the Problems I to IV, we shall restrict ourselves to the
case where the roots A (i = 1, ..., n) of the characteristic equation

|A—\E|,"=0 (1.8)

on the basic linear system

dr/dt = Az (1.9)

* The classes of functions defined in the formulations of Problems I to

IV do not coincide with the classes of functions corresponding to the
functional spaces selected below. However, for further exposition this
is not essential, since the minima sought below are reached on func-

tions n(t) and £% (t) from the classes defined in the formulation of
Problems I to IV,
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satisfy the condition*

Reh\i <0  (i=1,..., 1) (1.10)
and the vectors
b, 4b,..., A" (1.11)

are linearly independent, i.e.
Lb LA+ .. 1 A" =0 forilf4 ... 41250 (1.42)
holds.

Let us remark in conclusion of the formulation of the problem that for
the synthesis of regulating systems it is important to find the optimum
controlling quantities  and £% (@ =1, ..., n~ 1) not only (and not so
much) as functions of time ¢, but also as functions of the phase coordi-
nates x, of the system. We shall denote these functions of the coordinates
symbolically by n and £% [in a detailed writing in the form Nz, ..e,
%), fa(xl. e xn)}.

2. In this section the reduction of the Problems I to IV to the L-
problem (article IV of [6] ) in standard functional spaces is described.**

Let F(t) denote the matrix of the fundamental system of solutions for
the equations (1.9). We shall denote by the symbols { F(¢)},. and the ele-
ments of the reciprocal matrix F~! (¢) - by the symbols fi‘{t). The solu-
tions x(xg, t, 7, 1 £%}) of the nonhomogeneous system (1.1} must be cal-
culated by the Cauchy formula [ 7]

2 (@0, £ 1, (8 = F (Ot \F O F1 @ [bn(e) + 2] e ()] de (2.1

a=1

S~

For
t=T°% =1, = (2.2)

according to the conditions of the Problems I to IV the equality x(xo,?"c,
Ny {£.2})= 0 must be satisfied, i.e. after the substitution of (2.2}
into (3.1) and multiplication of this equality by F~2(T7) we obtain the
equality

* Condition (1.10) assures the possibility of optimum steering into the
point x = 0 for all arbitrary large initial values x,. If this condi-
tion is not satisfied, the arguments mentioned in the article remain
in force for a certain (in general, finite) region of the space ixioi.

** gection 2 has the goal to describe the problems, part of which was
considered earlier from a unified point of view.
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T® ne1
oz, = SF'l @b + 3] et ()] de (2.3)

a=1

Thus the optimum time of control for each of the Problems I to IV will
be the smallest of the numbers T satisfying the conditions

T e
— Zig = g {hi @)+ Y g (e (‘1)} dv (i=1,..., n) (2.4)
0 %=1
The functions h (r) and g,%(r) are given by the formulas
D= fulb G 1. ) (2.5)
k=1
gg () = Z Jir(T) ex® (i=1,... nja=1,..., n—1) (2.6)
h=1

and the functions n(t) and £% (t) are restricted by one of the conditions
(1.2) to (1.5), corresponding to the Problems I to IV.

Consider the functions h (¢) and g %(t) (0 ¢t< T) as the elements
of the following functional spaces* (L, C, L, ) [14]1[(B I) - (B IV) corres-
ponding to the Problems I to IV] :

(1) space (B I), the elements h of which are the functions h(t) (0 g

t < T) with the norm r

[l =12 ()ds (2.7)

0

(2) space (B II), the elements { h, g} of which are the vector functions
h(t), g?(t) (a=1, ..., nx 1), (0K t < T)with the norm

T

[, gy = {2+ 1a* () ar (2.8)

(3) space (B III), the elements h of which are the functions h(t)
(0 < t < T)with the norm

A= sup [&(t)] for 0t T (2.9)

(4) space (B IV), the elements h of which are the functions h(t) (0
t< T) with the norm

T 1/q

Inf=({1n@eas) (4 +

Q[

= 1) (2.10)

* See the footnote on p. 901.
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Also consider the functions n{t) and £% (¢) as the elements of the
following conjugate spaces (M, C*, L ):

(1*) space (B* 1), the elements 5 of which are the functions (t) with
the norm

%] =sup|m(t)] for t&|0,T|NE (2.11)

(2*) space (B* II), the elements {5, &} of which are the vector func-
tions 7(t), £%(¢) (e =1, ..., n - 1) with the nom
n—i i,
[on @l =sup [ () + 2 2 OF]  toro<e<r (2.12)
a==i
(3*) space (B* III1), the elements 5 of which are the functions 5 =d{

with the norm
T

(0| de (2.13)

0

|

I ()]

(4*) space (B* 1V), the elements  of which are the functions 5(t)
with the norm

i(0)] :(ywn t) (2.14)

Then the functions 5{(t), £2(t) determine linear functionals ¢ on the
elements of (B I) to (B IV), i.e.

T T
olhi=\r@u@d ), plh] =\ h(x)dl(x) (II) (2.15)
0 0
holds in the spaces (B I), (B III), (B IV) and
T (13 3
¢ l{h, g)] = i(fe(rmrw g* (x) §% (z)) de (2.16)
L 3

in the space (B II). The norms of the functionals ¢ are determined by the
forrmulas (2.11) to (2.14), respectively. In this way each of the Problems
I to IV is reduced to the following problem: to find the smallest number
T and a linear functional ¢ in the corresponding functional space in such
a way that

ool = — 23y (hg= D) fpy ()b, B=1,.. . n) (2.17)
Y =1
lelsct (2.18)

* See the footnote on p. 901,
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hold for Problems I, III, IV and

el{{hs, go}] = —a5,  (3=1,..., n) (2.19)
he = 2 Joe (D) by, g% = 2 fac(R) ey (2.20)
Y=t y=1

for Problem II.
For a given T the problems (2.17), (2.18) [or (2.18) to (2.20)] have

a solution if, and only if, (see [6])

min|(-h)| = T)>1, (g,-])=—1 (2.21)

or, respectively,

min|(-(h, @) = M(T)>1, (@) = —1 (2.22)

are satisfied.

In order to abbreviate writing the following notations are used

wm=2mw»wm=g%% (2.23)

=1

(I.{h, g}), being a vector function, is an element of the space (B II),
and has the components

ke (t), ) gt (x), ..y D) lage™ i (x) (2.24)
f=1 f=1 B=1

By virtue of our restrictions the quantity A (T ) is a monotonically
increasing function of the argument T, satisfying the condition*

lim M (7)) = oc (2.25)
T
Lm i (T) =0 (1, I, 1v) (2.26)
T->0

Consequently, for each x = x, the problem has a solution for which the
optimun control time T®is to be computed from the equation

min| (R =2T) =1, (o) =—1 (2.27)
or from

min| (- (b, )i =MD =1, (@) =1 (2.28)

respectively.

* VUnder the conditions (1.12) the equality
H{-R) =0 for El{fr,é()

is possible only for particular isclated values of te [0, T] (see
[8,91)and (2.25) is an obvious consequence of (1.10).
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According to the results of the book [ 6] the functional ¢ (or, what is
the same, the optimum controlling functions n{t) or 5(t), £%(¢))) is to
be determined from the condition that the element

"
b= 2} Ish (1)
B==1
or
n 'n n
(1 (hy ) = {2 1ohs (1), 20 g6 (0 - D) Tuga™! (o)
B=1 Be=1 =1
19 = { 1,%} being the solution of the problems (2.21), (2.22), is an ex-
tremum for the respective functional, i.e. the equality
el @-m = el(i*-R)]]
or, respectively, the equality
1ol by g =19 1 {Ry g)]]
is satisfied.

From these general results concerning the problems I to IV we obtain
the following deductions:

1. For Problem I the optimum control has the form

() = sign ( X Lhs (1) (2.29)

==l
where the numbers ZBG (B=1, ..., n) are the solutions of

T =

min { | Y Lo (9)|de =1, ] lpwp = —1 (2.30)
0 B=1 B==1

2. For Problem II the optimum control has the form

n

D Lathg (1)
B=1

nO(t) = n 2 n 2 n
o 0, 1 Op
[(;ﬂ Tk (1)) +(@2 RPNG) +m+(az=1;3 0

2

]

=1

" 2.31)
DIRREAC

£ (t) = 1,

[(Bi—-l lg’hg (t))2 + (135—4—1-1 1,8 (t))3 4.+ (Bi:l 1g°gpm—1 (z)) ]

(a=1,...,n—1)

where the numbers IBO (B=1, ..., n) are the solutions of
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T° n
min § [( 3 tohs (9)) + (Bz, logs () +...+(2 lsga"”‘(t))] dr =1
0 " f=1 =1
(2.32)
2 lBa:Bo =—1
Be=s1
3. For Problem III the optimum control has the fomm
1‘ n
M= Nudt—1), 2wy =1 (2.33)

Y-':l =1

where 8(t) denotes the impulsive §-function, t, the instants of time at
which the function | X 15°h (t){ assumes its largest value on the segment
[0, T°]1, and the numbers QB are the solutions of

(2.34)
mm(malelghﬁ(t)i tor 0<CE<T) =1 (}_, ty 250 = — 1)
B=1 =1
4, For Problem IV the optimum control has the fomm
N (t) = sxgn( Zl hs (2) l Z Ighs («c)l - (2.35)

B=1
where the numbers IBO are the solutions of

min § ] lehg() dz =1 (S]xﬁolgw——ui) (2.36)

o B=1 EST

3. Consideration of Problems I to IV from the general point of view,
as described in Section 2, allows us to investigate the limit passages
in the solutions of these problems when passing from one type of problem
to another type. Since Problem I is the most common one, it 1is interest-
ing to investigate limit passages from other "smooth" problems to this
problem, which has discontinuous solutions. In this paper, we shall in-
vestigate in all detail Problem II and the limit passage from Problem II
to Problem I. This passage is interesting, in particular, because the
solution of Problem II can be reduced to the solution of a certain ordinary
differential equation, and also because of the fact that Problem II admits
a smooth Liapunov function as it will be shown below.

We shall assume that the coefficient matrix

b; 81" PR, - }

.......... (3.1)
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is nonsingular.

In this section we shall establish that the optimum control time T
for Problem II is a continuously differentiable function of the coordi-
nates x,, of the initial point x;.

Consider a system of differential equations of a more general type
than (1.1), namely

dz /dt = BAz + by & + . . . J- en—1gn1 (3.2)

where 6 is a certain parameter which assumes non-negative values. We
shall denote the optimum control time T'? and the optimum control functions
19, £,% for Problems I and TI by virtue of system (3.2) by the symbols

Tlo(xls e 3 Tny '&)a TIIO (xl’ ooy Ty ’S)v 7)01 (xly ey Tny %)
Mot (Tyy « « < s Tne V), @ e Ty D)

(or, briefly by T, O(x, 9), T, 9¢(x, 8) and so on). The indices I and II
will be dropped 1f amblguxty IS not likely to occur.

Theorem 3.1. Assume that the matrix of the coefficients (3.1) is non-
singular, i.e. the determinant

n
bl f“ P #1

......... -0 (3.3)

and that the condition (1.10) is satisfied. Then for Problem II the op-
timum control time TO, being a function T Xys wees X, 8) of the co-
ordinates x5 of the initial point and a parameter £, has partial deriv-
atives of any order with respect to all arguments for all x # 0, 0 > 0.

Proof. According to the results of Section 2 in the case of Problem II
the optimum control time T° ("1* ves %,, 0) for the system (3.2) is to
be determined from the equation

ne—l n 2 e
mmg[@ le >: fox (& &)b) + 2 (% s }_Jlfay(z Nes) | de =1
forE lgzg=—1 (3.4)
B==1

where the symbols fa (t, 0) denote the elements of the matrix F~! (¢, 6),
this matrix being tﬁé reciprocal of the fundamental matrix F(t, 6) of
the solutions of the system
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dz/dt = $Az (3.5)

Denote the left-hand side.of equation (3.4) by the symbol A(xl, cens
x, T, 8). First of all let us note that for fixed values of x,, ...,
x_, 0 by virtue of the nonsingularity of the matrices F~! (¢, ) and
(3.1 the quantity A is a monotonic increasing function of 7. The exist-
ence and uniqueness of the solution of equation (3.4) were established
above in Section 2, starting from general results with respect to the
L-problem. Therefore, only the differentiability of the function T? re-
mains to be proved. For this purpose, by virtue of well-known theorems
on implicit functions, it is sufficient to verify that the function

A(xl, cees X, T, 6) possesses continuous partial derivatives of all
orders with respect to Xyy e, X, T, 6 and that the condition

oh/ 0T == 0 (3.6)
holds.

Let us show first that the quantities lp°, which assign a minimum to
the integral in (3.4), are continuous functions of X, oo %, T,00
which can be differentiated an arbitrary number of times.

The fact that for every fixed T the minimum of the integral in (3.4)
is actually reached for certain values of Inp= 1 0. i.e. the existence
of numbers 1 0 which solve the problem is pfovedBin the general case of
the L-problem in the book [ 6].

Since for £ lg? # 0 the expression under the square-root sign in (3.4)
cannot vanish, then for £ x? £ 0 the minimum of the integral in (3.4) can
be- found according to well-known rules of variational calculus.

In order to be more specific, assume that x, # 0. Then, using the con-
dition l,x, + ... + [ x = -1 to express I, in terms of the remaining
1;(i =2, ..., n) and substituting this expression in (3.4), we obtain

Mty o 3 Za, T, 8) =1minl L C7VNNRE. S R . X AU | 3.7

2 - n
Here y is a well-determined expression in terms of Xy evey Xy T, 9,

l,, ..., 1, obtained from (3.4) by means of substitution

1:%(—1—l2x2w...—lnzn) (3.8)

Because of the cumbersome nature of this expression we shall not write
it out here.

The numbers 580 are determined by the equations
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Or/olg=0  (3=2....n) (3.9)

and equation (3.8). These numbers will be continuously differentiable
functions of xp, 6, T provided the corresponding functional determinant
is different féom zero, 1.e.

"L (3.10)

Ex
.
2

3, o1,

holds. This is so, since the integral which determines the quantity y,
can be differentiated with respect to all the parameters xg, T, 6, IZ,
«++, Ll an arbitrary number of times (the existence of the derivatives
of the elements f, g (¢, @) with respect to the parameter 6 follows from
well-known theorems on differentiation of the solutions of system (3.5)

according to the parameter 8 [11] ).

For the proof of the inequality (3.10) it is sufficient to remark that
the quadratic form

w(Zyy o+ -y Zn) = Z a—l--%l-za 2 (3.11)

a, B=2 % B

is positive definite. The verification of this last condition follows
easily from geometrical considerationsl The analytical proof, however,
requires cumbersome writing and will be omitted here. Hence, we can con-
sider as established the fact that the quantities lo’ are functions of
the arguments g T, 6, having continuous derivatives of all orders.

Next we conclude that the function A(xl, ..+, %, T, 0) has continuous
partial derivatives of an arbitrary order with respect to all the argu-
ments, since as a consequence of the differentiability of the numbers 1 0
the integral, determining X, can be differentiated with respect to all
the parameters an arbitrary number of times.

Let us prove that inequality (3.6) is satisfied. Denote by T, any
fixed value of T and by 1 O(To) (8= 2, ..., n) the solutions of the
problem (3.7), corresponcgng to this value of T. It is obvious that for
AT> 0 we have

ANTo—AT)= min Y (@, .. o, Tn, To— AT, 8, b, ..., 1) <
!

2 e Ip
<@ v v Ty T AT, 8, 10 (T)s + -+, L (1))
1.6€. o
or> . b (xﬁ, Tﬂ- s) laa (To)) -9 (ZB, TO - AT? 8 la(To))
(ﬁ)r, > lim AT >0

This proves the validity of inequality (3.6), Hence, the theorem is proved.
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Remark. The arguments remain in force also in the case when ’ﬂg are
functions of 6.

4, In this section it is shown that in the case of Problem II the
optimum controlling quantities ny(z;, ..., z, ), foa(zl, ceer x,, )
(@ =1, ..., n—1) for the system (3.2) are continuously differentiable
functions of their arguments. Before we pass to the proof of this
assertion, let us introduce certain coneepts concerning the application
of the method of Liapunov functions to the problem under consideration.

Consider anew the Problems I and II for the system (1.1).

Assume that the function T (x;, ..., x,), being the optimum control
time, is known and is continuously differentiable in a neighborhood of
the point (xi, vee, xn). It is obvious that if we replace x,, ..., x_ by
the solutions zg{x,, t, 7, 12D (B=1, ..., n), then the total
derivative of the function T° with respect to time t along the optimum
trajectory must satisfy the equality

dT°jdt = —1 4.1
or, written out in full,
are 1 8T° -
T = D g (Oeumut bym(e) + 2 e (@) = — 1
u, B=1 a=1

Moreover, the optimum control functions no(x), éba(x) have the property
that on the set of admissible functions the quantity

n—1

2 :g'g (asu% +bam(a) + 2 e (51?))

B, B==1 a=1

assumes a minimum* only for these optimum control functions 7, éba. In
this way the quantity TC (x) plays here the role of a Liapunov function.
Let us explain this fact in all details. Assume that

n-—-1

& — Azt by (@) + 2 8 () (4.2)

[ 3 8

is the optimum system obtained from system (1.1) for g = 5,(x), £% =
£,%(x). The origin of the coordinates x = 0 will be an asymptotically
stable solution of system (4.2) with respect to arbitrary initial per-

* The application of this reasoning to the case considered here corres-
ponds to the general method of investigating problems of optimum
control, elaborated by Iu.M. Repin on the basis of methods of dynamie
programming.
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turbations xz;, (with the singularity that x(xy, t, 9q, L£,%1) » O for
t+TO (xo) and not for t » « as is usual in problems of stability. This,
however, is not essential). The function v(x) = T (x), by virtue of
system (4.2), satisfies all the conditions of the Liapunov theorem on
asymptotic stability [ 12]. Thus from this point of view for the solution
of the problem of optimum control, it is sufficient to find a function
v(x), satisfying the conditions of Liapunov's theorem on asymptotic
stability, and being such that on the set of admissible control functions
p(x), £%(x), by virtue of system (1.1), the condition

min{dv/dt) = —1 (4.3)
is satisfied.

A Liapunov function v(x) which satisfies these conditions will be
called an optimum Liapunov function. From Theorem 3.1 it follows that for
Problem IT a smooth optimum Liapunov function exists (for Problem I such
everywhere smooth optimum Liapunov function v(x) may not exist). It
should be emphasized, however, that an effective determination of such a
function v(x) is difficult.

Let us formulate now the basic result of this paragraph.

Theorem 4.1, If the conditions (1.10) and (3.3) are satisfied, then
for Problem II the optimum control quantities 7, «foa, by virtue of
system (3.2), are continuous functions of their arguments x,, ..., x_, 0
which can be differentiated an arbitrary number of times for all x # O,
8 > 0%,

Proof. The validity of Theorem 4.1 can be established on the basis of
formulas (2.31), (2.32) and Theorem 3.1 on the differentiability of the
quantity T° (x, 8), since obviously, for the computation of N9 gr oves
xng), EMxy gy ooy x.,), the substitution t = 0 must be made in the
formulas (2.31) and (2.32)., However, we shall also indicate here another
method for the proof of Theorem 4.1, which is not based on formula (2.31).
Let us present this proof.

According to the arguments mentioned above in this section the optimum
control functions no{x,, ..., z,, 6), foa(xl, v+, %,, 0) can be deter-
mined from the condition

(- 3

u, B=1

n—i

ore
&; <8“!3u- Ty + bp Mo (2, ) + Z e & (2, 9)> =

a=1

—min %% (Pagu i + bpm(, ) + 3] 58 (a, 9)) (4.4)

@, f==1 a=1

* See the remark at the end of Section 3.
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under the assumption
n—1

2 (z, 9) + ) (B (=, 9P < (4.5)

a=1
The solutions of the problems (4.4) and (4.5), obviously, have the
form

n n 32—

nole, 9) =~ B (3 - bp) £33 o) ] (46)

=1 B B= =] (5—-1

)

ceo-- (I EW cEEET

The matrix (3.1) is nonsingular and the vector gradient {3 T °%/dxs}
of the Liapunov function v{x) = T (x, 6) is different from zero. Teere-
fore, as a consequence of the differentiability of the function T° (x, 6)
(Theorem 3.1), we conclude from the formulas (4.6) and (4.7), that the
optimum control functions 5,(x, 6) and £ *(x, 6) are continuously diffe-
rentiable, an arbitrary number of times, with respect to all their
arguments. This proves the theorem.

Remark. Equation (3.4) and equalities (4.6), (4.7) allow us to solve
the problem of optimum control by reduction of this problem to usual
variational problems. However, the difficulties which arise here in con-
nection with the corresponding calculations are very great. This fact
makes an effective determination of the optimum Liapunov function
v = 10(x1, e xn) and, consequently, of the functions qo(x), foa(x),
difficult,

For an approximate construction of the optimum system in the case of
Problem II the following method can be used. Let vo(x) be a positive-
definite Liapunov function for the system (1.9), which has by virtue of
this system a negative derivative. If the conditions (1.10) are satisfied,
then such a function vo(x) exists and can be selected in the form of a
positive quadratic form.

Let us calculate the derivative dv /dt by virtue of system (1.1) and
let us select the functions n,(x), f (x) from the conditions

n—1

P (b m (@) + Y e g (x))=min (4.8)
B=1 a=1
mt () + Y (B (@))E =1 (4.9)
a=z]
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n 5 n s 2 n—1 =n s 9ty
v L . L
&) =— glzﬁi by [(Béla':- ba) T El (\gz155§ e Q) } (4.10)
n n n—1 n
g @) =— ) gﬁbﬁ{(z%&b Z(E SZ" eBH (4.11)
=1 B =1 B a=1 ‘Be=1 B

After the substitution of n =7,, £%= 6 @ as given by (4.10), (4.11),
into equations (1.1), we obtain a system which is asymptotically stable
on the whole. For this system there exists a Liapunov function vl(x),
satisfying the condition

dvy (z) jdt = —1 (4.12)

The existence of the function vy (x) can be proved by the methods of
1nversion of the Liapunov theorems [13] (The fact that here x(t) » 0 as
t > T , and not as ¢t » =, does not play a decisive role in the problem
considered concerning the existence of vl(x)). The existence theorems
for Liapunov’ s functions do not give effective methods for the construct-
ion of these functions. Assume, however, that we succeeded in construct-
ing a smooth function, the derivative of which by virtue of system (1.1)
satisfies the condition

doy dt = —1 (4.13)

Compute anew the derivative of the function vy (x) by virtue of system
(1.1), where n = 1,, % = £,%, and determine these function 7,, £ from
the condition

dv, / dt = min (4.14)
for '
n—3i
et + D) (&P =1 (4.15)
a=1

and so on. If in the kth step we had succeeded in an effective construct-
ion of & smooth Liapunov function vk(x) which by virtue of the system of
equations, constructed in the immediately preceding step, reasonably well
approximates the condition

dvy [ dt = —1 (4.18)

then after a certain number of steps we would obtain a system of equa-
tions possessing good optimum properties.

Unfortunately, at present it is impossible to indicate such a general
effective method for the construction of a smooth function uh(x), satisfy~
ing completely by virtue (or approximating reasonably well) of a known
system of equations the condition (4.16). One of the methods for such an
approximation may consist in finding the functions ”k(x) in the form of
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an expansion according to certain functions (for example, trigonometric
polynomials), approximating the condition (4.16) in the mean. However,
this method also leads to cumbersome computations.

5. In this section the limit passage from the solutions of Problem II
to the solutions of Problem I is investigated for eB“ >0 (a=1, ...,
n-1;, B=1, ..., n).

Theorem 5.1. If the conditions (1.10), (1.12) and (3.3) are satisfied,
then for all x the optimum control time T 0(31’ veny xn) of Problem 11
converges to the optimum control time TlQ( x,, --., %) of Problem I for
eﬁa -»> 0, i.e.

W T (2, . . oy &n) = T2+« - s Za), Dlegr2—0  (5.1)
' B

R

holds.

Proof. According to the results mentioned in Section 2, the optimum
time Ti(xl, vees x") is to be calculated from equation (2.30), while the
optimum time T||(x1, cees xu) from equation (2.32).

It follows from these equations that
T;;(zl,...,xn)<T;(xl,...,Zﬂ) (5.2)

On the other hand, it is obvious that for t = T* = 7\0 - 7}'0 (where
AT > 0) we have

T‘

min S é Leha (1) | d= < 1 ( i lpzp = — 1) (5.3)
0 f=1 B=1
and
T* n n n
lim min S [( 3 lohs () + (3 1oy )t + (3] g (1.-))2}"’& -
] =1 B=1 B=1
:minTS [ 5} lehg (x)|d=  for ez —0 (i lozg = —1)

0 B=1 B==1

i.e. for sufficiently small values of eﬁf we have the inequality

*

min { [(ﬁ‘, Ighg (1)) + (i logs' () -+ -+ 3] lyggt @) @ <1
[ B=1 B=1

f=1
(E 532}'3 == — 1)

B==1
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From the last inequality and inequality (5.2) we conclude that for
sufficiently small values of q@a the inequality

T — AT T <T\°
is satisfied. This proves the theorem.

Remark. Using the condition (5.1), it is possible to verify that for
ex? » 0 we have not only convergence of the optimum time T‘Io-a TIO but
also convergence in the measure of the optimum control functions To11” Mo

Theorem 5.1 justifies the following method for the determination of
optimum control for Problem I: construct an auxiliary system (1.1) with
sufficiently small numbers eq®, solve Problem II for this system and put
Moy = Mgy As it will be shown in the next section, such a method is
justified by the fact that for Problem II it is possible to indicate a
regular method of solution.

6. In this section a differential equation is derived which allows us
to determine the optimum control time To(xl, e zn) and the optimum
control functions for Problem II*.

Consider anew side by side the systems (1.1) and (3.2), the last
system going over into system (1.1) for § = 1. As it was shown in Section
3, the optimum control time T° (xi, v+, %, 0) is a continuously diffe-
rentiable function of the parameter €. In the notations of Section 3 the
optimum time T is to be determined from the condition

(6.1)

min y(x, ..., %n, T, ¥, Ly o b)) =1, ..., 2a, T, &, L°, ..., ,5) =1

Ly ooy
where the numbers 1,°(x, 6), ..., 1 %(x, ) which determine the minimum
in the equality (6-i), are also continuously differentiable functions of
the parameter 6. Let us make use of this condition for the derivation of
a system of differential equations, the integration of which will allow
us to determine the quantities TO (x, 6) and 1(x, ). In order to
abbreviate writing in what follows we shall drop the arguments x, which
are assumed to be fixed. Substituting in the equality (6.1) the solutions
150(8), we shall obtain the following equation for the determination of
tﬁe implicit function T (6):

(T, 8, 1°(9), ..., L2(®) =1 (6.2)

In conformity with the well-known formula for the derivative of an

* In this section, in conformity with the remark in Section 3, we may
also assume that ﬂga are functions of @, and that ﬂéa > 0 for 6 > 1.
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implicit function, we can write for dT%/d@ the equality

dT° roay dl d
s < +}.| 6lT°7[;)—> _6—;—’ (6.3)

The quantities lp? determine the minimum of the quantity Y Therefore,
for | = 10 the equalities (3.9) are satisfied, i.e. dy /1Y = 0 (B =
2, ..., n). Consequently, the function T? (§) satisfies the dlfferent-
ial equation

ar 0/ 9% (6.4)
dy — oy joT

Substituting T = T? (9) into the equality
(T, 9 1°,...,.n.°0) =miny (T, 9, {s, ..., ly) (6.9)
we obtain n — 1 equations for the determination of the implicit functions
lB : F] o o o
2y = DSl o pezim (6.6)

Therefore, in conformity with the well-known formulas for the diffe-
rentiation of implicit functions [ 10], we conclude that the functions

lﬁo (6) must satisfy the system of differential equations
Al (®) D (Mg, . A /DA .. 8, o 1)

- V- _ -
B - Da..A)DWE L0 ¢=2....m (67

In computing the functional determinants D(l ey B,y vee, 1 0) in
the numerator of the equality (6.7), it must be taken into account " that
for the computation of the derivative of A with respect to 6, the
quantity TY (4) in A, is assumed to be a known function of 6, i.e. taking
into account the equality (6.4) in the Sth column of these determinants
the following expressions must be written

oA, A, dT° 9A, 9D, dv/09 B 6.8
W+Wd8=—6—8—W61/3T° @=2...,n) (6.8)

Consequently, for fixed initial values xp the functions T'° () and
130(0) (B=2, ..., n) satisfy the equation (6.4) and the system (6.7).

The system of equations (6.4), (6.7) permits to indicate the following
method for the solution of Problem IT (and also of Problem I by replacing
it by an auxiliary approximate Problem IT)* (see thefootnote on p. 916):

determine the solutions T° (0) and 15°(0) (8= 2, ..., n) for @ = 0 and
integrate the system of equations (6'3 (6. 7) for 0 6 1. The solu-
tions TO (1), 1,%1) (B=2, ..., n) determlne the optimum control time

TO and the opt,imum control functions 14, £, [according to the formulas
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(2.31)]. The solutions T? (0) and 12°(0) can be determined very simply
from the conditions (2.31) and (2. ?g since for € = 0 the fundamental
matrix of solutions F(t) of the system (3.2) is a unit matrix. Equations
(6.4), (6.7) have complicated right-hand sides and cannot be integrated
in terms of elementary functions. These equations, however, can be in-
tegrated by means of any one of the known numerical methods. The solution
of equations (6.4), (6.7) requires cumbersome computations. However,

this method of solution allows us to circumvent one of the main difficult-
ies in solving problems of optimum control, namely the necessity of solv-
ing boundary-value problems.

In order to obtain the quantities TC and Ngs in the form of func-
tions of the coordinates, we can approximate Or0 €x, 8) and 1%(x, 6) in
a region we are interested in, for the purpose of the synthesis of the
system by a system of orthogonal functions, the coefficients of these
expansions, being functions of the parameter ¢, and derive from system
(6.4), (6.7) differential equations for the determination of these
coefficients.
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