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In the present paper problems of optimum (in the sense of high-speed 
action) control of systems containing a linear basic part and correspond- 
ing to certain basic types of restrictions on the controlling actions are 
considered. Limit passages in the solutions are discussed which corres- 
pond to the passages from one type of restrictions to another. On the 
basis of these limit passages, approximate nethods are described for the 
computation of optimua trajectories and the construction of optimum 
systems. 

1. fn this section the basic problems of optimum control considered in 
the present paper are formulated. 

tr?t the behavior of the phase coordinates xi(t) (i = 1, .,, , nl of a 

control system be described by the differential equations 

dX 
- = AX + by -t_ e’~’ + , . . + e*-1tn-l 
dt (1.1) 

where 

X== fz,, -. .f GJ, b = {b,, * . ., bnj, e” = (el=t * * ., ea=> (a = 1,. * * f n - 1) 

are n-dimensional vectors, A is & n x ft matrix with constant elements 

oij, and ‘I, ~*,u = 1, *.*, n - lf are scalar functions. 

Given the initial conditions x0 = 1 xio, . . . . xnOIp it is required to 
find the functions q 

x(t) = r(x*, t * Tj*, 
6 a toptim control 1 in such a way that the point 

“ig!A moving along a trajectory of system f 1. l), 

where ? = 90, 4” = q)? reaches the origin of coordinates x = 0 in the 
shortest possible time t = TO (TQ being the optima control time). It is 
assumed that the (a&nissible) functions q(t 1, (“lt) (a = I, ‘..) n- 1) 
snd the coefficients of system (1.1) are restricted by one of the follow- 
ing conditions : 

Problem I. The coefficients e&r = 0 (a = 1, . ..# n - 1; p = 1, ,,,, n) 

899 
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and q(t) is a piecewise smooth function restricted by the condition 

I? (t) I < 1, O<t<T” (1.2) 

Problelr II. The functions v(t), c”(t) (a = 1. . . . , n - 1) are continu- 

ous and satisfy the condition 

n-1 

Problem III. The function q(t) = d( (t) is the Stieltjes differential 

of another function c(t) which is bounded and restricted by the condition 

the coefficients e a = 0 (a = 1, . . . , n - 1; 
P 

Probler IV. The coefficients e a - 0 (a = 

and 7 ( t) is a cant inuous 
P- 

function restricted 

TO 
/r \I/P 

p= 1, . . . . n). 

1, . ..I n - 1; /3= 1, . . ..n) 

by the condition 

Problems I, II and IV are problems of optimum control with one steer- 

ing function q. The condition (1.2) corresponds to a restriction on a 

controlling action (force, current, stress, and so on) at each instant t 
in the transitional process 0 & t 4 To. The condition (1.4) is a restrict- 

ion on the impulses of the controlling quantities*. To the condition (1.5) 

for p = 2 corresponds a restriction on the energy (mean power) of the 

control actions. It is interesting to consider this condition also for 

other values of p E[ 1,OO ) from the point of view of limit passages to the 

Problems I (p -) W) and III (p -, 1). 

* Also another problem which occurs in control theory can be reduced to 

the problem of type III, namely the problem of construction of optimum 

control actions for a system, described by the equation 

lz* c + a, d”-‘z i_ . ’ - 

dtn dtn---I 
I. -+ a,% = e,pSaSP 

a. P=1 
(1.6) 

where the admissible control functions t” (a = 1, . . . , n) are restricted 
by the condition 

To n 

1 ib CaBEa (t) t;@ (t)) dt < 1 
I 

0 a, P=I 

and i Ca@?~@ is a positive definite quadratic form. 
a, P=1 

(1.7) 
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Problem II is a problem of optimum control with n Controlling aCtiOnS 

restricted by the condition (1.3) at each instant t in the transitional 

process 0 < t < To. For sufficiently general assumptions Problem II 

assumes smooth solutions qo( t), t,“(t) contrary to Problem I, for which, 

as a rule, the optimum steering qo(t) is a discontinuous function. It is 

also of interest to investigate the limit passage from Problem II to 

Problem I for e a + 0 (a = 1, . . . , n - 1; p = 1, . . . , n). After the 
P 

justification of such a limit passage, by means of which we can approxi- 

mate Problem I by Problem II with small e a, 

fs 

it is possible to construct 

an approximate method for the solution o Problem I in terms of continuous 

optimum controlling functions qO(t) of Problem II. 

The method applied below for the investigation of Problems I, II and 

IV can also be used in the case of several controlling actions qa(t) 

(a = 1, . . . , r). However, in the present paper for the solution of 

Problems I, II and IV we shall restrict ourselves to a single controlling 

action 77(t). 

Problems of optimum control in the sense of rapid action have been con- 

sidered by many authors (see, for example. [ l-41 ). In this paper we 

shall restrict ourselves to the problem for which the basic part of 

system (1.1) [for 7 = 0, 6” = 0 (a = 1, . . . , n - I)] is linear. Problems 

I to IV, and similar ones which can be reduced to them, can be considered 

from a unified point of view, indicated in the paper [ 91, provided these 

problems are reduced to a single problem of functional analysis (L-problem 

in abstract space, article IV, [ 61 ), considered for each of the Problems 
I to IV in a specially selected functional space.* 

Investigating the Problems I to IV, we shall restrict ourselves to the 
case where the roots Xi (i = 1, . ..) n) of the characteristic equation 

IA-AhEI1n=O (1.8) 
on the basic linear system 

dx,ldt = Ax (1.9) 

l The classes of functions defined in the formulations of Problems I to 

IV do not coincide with the classes of functions corresponding to the 

functional spaces selected below. However, for further exposition this 
is not essential, since the minima sought below are reached on func- 
tions I)(t) and f” (t) from the classes defined in the formulation of 
Problems I to IV. 
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satisfy the condition* 

Reb<O (;=I,..., IZ) 
and the vectors 

b, Ah, . . ., An-lb 

are linearly independent, i.e. 

(1.10) 

(1.11) 

holds. 

t,b + t,Ab -t * . . +l,An-“b#O fort li2+...-+-$,‘J=#=0 (1.12) 

Let us remark in conclusion of the formulation of the problem that for 
the synthesis of regulating systems it is important to find the optimum 
controlling quantities 9 and [” (a = 1, , . . , 88 - 1) not only (and not so 
much) as functions of time t, but also as functions of the phase coordi- 
nates xi of the system. We shall denote these functions of the coordinates 
symbolically by q and [” [ in a detailed writing in the form q (x,, . . . , 

x,), p$’ ..I, x,)1. 

2. In this section the reduction of the Problems I to IV to the L- 
problem f article IV of c 6 1 ) in standard functional spaces is described.** 

Let F(t) denote the matrix of the fundamental system of solutions for 
the equations (1.9). We shall denote by the symbols IFft)f.. and the ele- 
ments of the reciprocal matrix F-l (t) - by the symbols f.'tt,. 'Ihe solu- 
tions x(x0* t, q, i~$“l) of the ~~~gen~us system Cl.k! must be cal- 
culated by the Ceuchy formula [: ?I 

For 

according to the conditions of the Problems I to IV the equality x<nO, To, 
qo, {( nt I== 0 must be satisfied, i.e. after the substitution of (2.2) 
into ( S .l) and multiplication of this equality by FW1(To> we obtain the 
equality 

* 

t* 

Condition (1.10) assures the possibility of optimum steering itit the 
point x = 0 for all arbitrary large initial values xio. If this eondi- 
tion is not satisfied, the arguments mentioned in the article remain 
in force for a certain (in general, finite) region of the space f Xioj. 

Section 2 has the goal to describe the problems, part of which was 
considered earlier from a unified point of view. 
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- x0 = p-1 (7) [bq (T) + y ey p)] dT (2.3~ 
0 U.=1 

‘Ihus the optimum time of control for each of the Problems I to IV will 

be the smallest of the numbers To, satisfying the conditions 

T 

- ZiO = \ (k(T)?(7) + il$fp(r)E’(r)jdr (i= i,. . ., T2) (2.4) 
La=1 

The functions h:(r) and gia(f) are given by the formulas 

hi(~) = i fik(T)bk f; : 1,. . ., n) (2.5) 
h=l 

g{(5) = i fik(T.)eka (i = 1,. . ., n; a=l, . . ., n- 1) (2.6) 
It=1 

and the functions q(t) and 5" (t) are restricted by one of the conditions 

(1.2) to (l.S), corresponding td the Problems I to IV. 

Consider the functions hi(t) and giQ(t) (04 t< T) as the elements 

of the following functional spaces* 

ponding to the Problems I to IV1 : 
(L, C, Lq) [141 [(B I) - (B IV) corres- 

(1) space (B I), the elements h of which are the functions h(t) (0 < 

t& T) with the norm 

II h II = \ I h (4 I & (2.7) 
; 

(2) space (B II), the elements { h, gl of which are the vector functions 

h(t), g(t) (a = 1, . . . . nx l), (O,< t< T)with the norm 

II {h, g> 11 = f (h” (5) + i’ [g” (q%r 
0 a=1 

(2.8) 

(3) space (B III), the elements h of which are the functions h(t) 

(O< t< T)with the norm 

II h I = SUP Ih 011 for O<t<'T (2.9) 

(4) space (B IV), the elements h of which are the functions h(t) (04 

t< T 1 with the norm 

(2.10) 

l See the footnote on p. 901. 
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Also consider the functions v(t) and e" (t) as the elements of the 

following conjugate spaces (M, C', L, >: 

(l*) space (B* I), the elements 7 of which are the functions q(t) with 

the norm 

(2.11) 

(2*) space (B* II), the elements $I, (1 of which are the vector func- 

tions q(t),eo(t) fa = 1, . . . . n - 1) with the norm 

R--1 

(3*) space (B* III), the elements 7 of which are the functions q = d< 
with the norm 

(4*) space fB* IV), the elements q of which are the functions v(t) 

with the norm ,.- 

(2.14) 

Then the functions q(t), e=(t) determine linear fnnctionals $, on the 

elements of (B I) to (B XV), i.e. 

cp[hl = f WhW (I, IV), q.~ [h] = [h(r)dC(Tj (III) (2.15) 

0 0 

holds in the spaces fB I), (B III), (B IV) and 

igf{A, g>l= ~~~~~)~(~)+ k'~"(r)rWdr (2.16) 
0 &==I 

in the space (B 

formulas (2.11) 

II). The norms of the functionals tp are determined by the 

to (2.141, respectively. In this way each of the Problems 

I to IV is reduced to the following problem: to find the smallest number 

T and a linear functional 4 in the corresponding functional space in such 
a way that 

‘p [&I = - “PO (hp= i -l /pywy, B=l...., n) (2.17) 
Y=l 

jj ‘9 11 .< 1 (2.18) 

* See the footnote on 9. 901. 
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hold for Problems I, III, IV and 

‘p [(h’:,, gp)l := - 2pij (3 :7 1,. . .( n) (2.19) 

h = P la,(T)b. gpa == i faY (5) eya (2.20) 
Y=l Y=l 

for Problem II. 

For a given Tthe problems (2.17), (2.18) [or (2.18) to (2.20)] have 

a solution if, and only if, (see [fi] > 

rnin~~(~.~~!~ =k(T)),l, (zO.I)= -1 (2.21) 

or, respectively, 

minjl (I- {A, g>> [I = h (1’) > 1, (2,*Z) = - 1 (2.22) 

are satisfied. 

In order to abbreviate writing the following notations are used 

(i*h)= i: Z&(T), (I.2,) = i l@pa (2.23) 
P=l B=1 

(l.Ih, gj 1, being a vector function, is an element of the space (R II), 

and has the components 

@&3iilc (T/A i k31(r),. * .I i &F-‘(q (2.24) 
8=1 P=l 

By virtue of our restrictions the quantity A (T ) is a monotonically 
increasing function of the argument T, satisfying the condition* 

lim h(T) = cc (2.25) 
T-MB 

Iimi (T) = 0 (I, rr, Iv) (2.26) 
T+o 

Consequently, for each x = x0 the problem has a solution for which the 

optimum control time To is to be computed from the equation 

or fran 

minjj(I-h)ll= h(T) = 1, (&.Z)=--l (2.27) 

min/I(Z+{h, g})/j = k(T)= 1, (zJ.1)=--1 (2.28) 

respectively. 

* Under the conditions (1.12) the equality 

\\(I-h)ll=O for 2;lp2+0 

is possible only for particular isolated values of t 6 f0, ~1 (see 
f 8,9] f and (2.25) is an obvious consequence of (1.10). 
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According to the results of the book [ 61 the functional $ for, what is 

the same, the optimum controlling functions v(t) or v(t), tQft>)> is to 

be determined from the condition that the element 

1’ = f Ipo! being the solution of the problems (2.211, f2.22), is an ex- 
tremum for the respective functional, i.e. the equality 

il~li;;jPWi= iu,l(~“-WI / 
or, respectively, the equality 

iiYilII(~” {k gl)ll = I cp t(l”- 112, g>)l] 

is satisfied, 

From these general results concerning the problems I to IV we obtain 
the following deductions: 

1. For Problem I the optimum control has the form 

rio (t) = sign (i Z,“hp (t}) 
h==l 

where the numbers 1 po (p = 1, . . . , n> are the solutions of 

(2.29) 

(2.30) 
P-l 

2. For Problem II the optimum control has the form 

where the numbers Zfl” $3 = 1, . . . , n) are the solutions of 
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3. For problem III the optima control has the form 

(2.33) 
y=1 7=1 

where S(t) denotes the impulsive S-function, t the instants of time at 
assun~~ its la&est value on the segment 

$ichT'Fr ~~~~~~~~~~~~~~re the solutions of , 
(2.34) 

4. For Problem IV the optimum control has the form 

rtott1 = (2.35) 

where the numbers IO" are the solutions of 

?I= n 

min 
\lb 

’ zp hb (t) /u d7 = 1 (2.36) 
i, P==1 

3. Consideration of Problems 1 to IV from the general point of view, 
as described in Section 2, allows us to investigate the limit passages 
in the solutions of these problems when passing from one type of problem 
to another type. Since Problem I is the most common one, it ,is interest- 
ing to investigate limit passages from other asmoothn problems to this 
problem, which has discontinuous solutions. In this paper, we shall in- 
vestigate in all detail Problem 11 and the limit passage from Problem II 
to Problem I. This passage is interesting, in particular. because the 
solution of Problem II can be reduced to the solution of a certain ordinary 
differential equation, and also because of the fact that Problem II admits 
a smooth Liapunov function as it will be shown below. 

We shall assume that the coefficient matrix 

(3.1) 
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is nonsingular. 

In this section we shall establish that the optimum control time To 
for Problem II is a continuously differentiable function of the coordi- 

nates xi0 of the initial point no. 

Gtnsider a system of differential equations of a more general type 

than (1.11, namely 

dx/dt=8Az+i"i~+e1~1+ ...+en-lEn-l (3.2) 

where 8 is a certain parameter which assumes non-negative values. We 

shall denote the optimum control time To and the optimum control functions 
qo, toa for Problems I and II by virtue of system (3.2) by the symbols 

(or, briefly by 

will be dropped 

Theorem 3.1. 

-qOII(h . * * , &t 81, Eoa (q, * * . , &a, 8) 

7'r"(n, e), T,,'(x, 0) and so on>. The indices I and II 

if ambiguity is not likely to occur. 

Assume that the matrix of the coefficients (3.1) is non- 

singular, i.e. the determinant 

bl q1 . . . et n-1 

* . . I . . . I f-0 (3.3) 

b, en1 . . . can-’ 

and that the condition (1.10) is satisfied. Then for Problem II the op- 

timum control time To, being a function T’(x,, . . . . xn, 8) of the co- 

ordinates xp of the initial point and a parameter 6, has partial derir- 

atives of any order with respect to all arguments for all r f 0, 0 > 0. 

Proof. According to the results of Section 2 in the case of Problem If 

the optimun control time To (x,, . . . . xn, @) for the system (3.2) is to 
be determined from the equation 

where the symbols f 
@ 

ft, 8) denote the elements of the matrix F-’ (t, 61, 
this matrix being t e reciprocal of the fundamental matrix F(t, 0) of 

the solutions of the system 
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dx/dt = i+nx (3.5) 

Denote the left-hand side.of equation (3.4) by the symbol X(X,, .*., 

xs, T, 0). First of all let us note that for fixed values of x1, . ..) 

n , 0 by virtue of the nonsingularity of the matrices F-l (t, 0) and 

(3.1) the quantity X is a monotonic increasing function of T. ‘Ihe exist- 
ence and uniqueness of the solution of equation (3.4) were established 

above in Section 2, starting from general results with respect to the 

L-problem. 'Iberefore, only the differentiability of the function To re- 

mains to be proved. For this purpose, by virtue of well-known theorems 

on implicit functions, it is sufficient to verify that the function 

X(X,, . . . . x,, T, S> possesses continuous partial derivatives of all 
orders with respect to x1, . . . . xn, T, 8 and that the condition 

ah{aT+O (3.6) 

holds. 

let us show first that the quantities Zp", which assign a minimum to 

the integral in (3.41, are continuous functions of x 1' a-‘, X”’ Tt 8 
which can be differentiated an arbitrary number of times. 

The fact that for every fixed T the minimum of the integral in (3.4) 

is actually reached for certain values of 1 - 1 ‘, Le. the existence 

of numbers 1 ’ 
B 

@-(ss which solve the problem is prove in the general case of 

the L-problem in the book [ 61. 

Since for I: 1 2 # 0 the expression under the square-root sign in (3.4) 

cannot vanish, a t en for I: z2 f 0 the minimum of the integral in (3.4) can 

be-found according to well-known rules of variational calculus. 

In order to be more specific, assune that z f 0. 'lhen, using the con- 

dition llxl + . . . + 1,x, = - 1 to express I, ii terms of the remaining 
Z&i = 2, . . . . n) and substituting this expression in (3.41, we obtain 

Here y is a well-determined expression in terms of x1, . ..) 
1 obtained from (3.4) by means of substitution 

x,,, T, 0, 
I 2' ..'I n' 

z~=~(-l-z,r,-...-zI,+n) (3.8) 

Because of the cumbersome nature of this expression we shall not write 
it out here. 

Ihe numbers 1~' are determined by the equations 
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a7 I al@ = 0 (9 = 2, . . , n) (3.9) 

and equation (3.8). l’hese nunbers will be continuously differentiable 

functions of x 
P 

, 19, T provided the corresponding functional determinant 

is different ram zero, i.e. 

(3.10) 

holds. This is so, since the integral which determines the quantity y, 
can be differentiated with respect to all the par&eters x B’ T, 8, $8 
. . . . 1” an arbitrary number of times (the existence of the derivatives 

of the elements fen (t, 0) with respect to the parameter 8 follows from 

well-known theorems on differentiation of the solutions of system (3.5) 

according to the parameter 6 1111 ). 

For the proof of the inequality (3.10) it is sufficient to remark that 

the quadratic form 

(3.11) 

is positive definite. The verification of this last condition follows 

easily from geometrical consideration4 lhe analytical proof, however, 
requires cumbersome writing and will be omitted here. Hence, we can con- 

sider as established the fact that the quantities 1 * are functions of 

the arguments x p T, 8, having continuous derivativts of all orders. 

Next we conclude that the function X(x,, . . . , r,,, T, 0) has continuous 
partial derivatives of an arbitrary order with respect to all the argu- 

ments, since as a consequence of the differentiability of the numbers $3’ 

the integral, determining X, can be differentiated with respect to ail 

the parameters an arbitrary number of times. 

Let us prove that inequality (3.6) is satisfied. Denote by To any 
fixed value of T and by I 
problem (3.71, 

*(To f (fi = 2, . . . , n) the solutions of the, 

correspon ing to this value of T. It is obvious that for i? 
A T > 0 we have 

h(T,--AT)= lminl 7(x1,. . . ,xn, T,--AT,$,t,, . . . ,ln)< 
*,...I n 

< 7 (xl, . . . , ~nr T, - AT, 8, 1,’ (T,), . . . , Lo (T,)) 

i.e. 

‘Ihis proves the validity of inequality (3.61, Hence, the theorem is proved, 
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Remark. The arguments remain in force also in the case when ya are 

functions of 6. 

4. In this section it is shown that in the case of Problem II the 

optimum controlling quantities ?jo(zl, . ..* x,, 6). [9”(xl* . . . . ~a, 8) 

(a - 1, **.* R- 1) for the system (3.2) are continuously differentiable 

functions of their arguments. Before we pass to the proof of this 

assertion, let us introduce certain concepts concerning the application 
of the method of Liapunov functions to the problem under consideration. 

Consider anew the Problems I and II for the system (1.1). 

Aaswne that the function To (x,, . . . . x,), being the optimum control 
time, is known and is continuously differentiable in a neighborhood of 
the point Cr,, . . . . xn). It is obvious that if we replace xl* . . . . x,, by 
the solutions x.(x0, t, no, {toal) (0 = 1, . . . . n), then the total 

(i derivative of t e function To with respect to time t along the optimum 
trajectory must satisfy the equality 

or, written out in full, 
dT”/dt = -1 (4.1) 

Mxeover, the optimum control functions qo(xl, ~Oa(x) have the property 
that on the set of admissible functions the quantity 

assumes a minimum* only for these optimum control functions qo, toa. In 
this way the quantity To (~1 plays here the role of a Liapunov function. 
Let us explain this fact in all details. Aasune that 

is the optimwn system obtained from system (1.11 for 7 = q,(x), 6" = 
&,o<x>. The origin of the coordinates x = 0 will be an asymptotically 
stable solution of system (4.21 with respect to arbitrary initial per- 

* The application of this reasoning to the case considered here corres- 
ponds to the general method of investigating problems of optimum 
control, eXaborated by 1u.Y. Repin on the basis of methods of dynamic 
programming. 
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turbations x0 (with the singularity that x(x0, t, ‘lo, { r,or) + 0 for 
t + To (x0) and not for t + 00 as is usual in problems of stability. This, 
however, is not essential). The function v(x) = To (xl, by virtue of 
system (4.21, satisfies all the conditions of the Liapunov theorem on 
asymptotic stability 1121. ‘Ih us from this point of view for the solution 
of the problem of optimum control, it is sufficient to find a function 
v(x), satisfying the conditions of Liapunov’s theorem on asymptotic 
stability, and being such that on the set of admissible control functions 

q(z), 5‘” (~1, by virtue of system (1.11, the condition 

min(~v/~t) = - 1 (4.3) 

is satisfied. 

A Liapunov function v(x) which satisfies these conditions will be 
called an optic Liapunov function. From Theorem 3.1 it follows that for 
Problem IT a smooth optimum Liapunov function exists (for Problem I such 
everywhere smooth optimum Liapunov function v(x) may not exist). It 
should be emphasized, however, that an effective determination of such a 
function v(x) is difficult. 

Let us formulate now the basic result of this paragraph. 

Theorem 4.1. If the conditions (1.10) and (3.3) are satisfied, then 
for Problem II the optimum control quantities qO, eO’, by virtue of 
system (3.21, are continuous functions of their arguments x1, . . . , xn, 8 
which can be differentiated an arbitrary number of times for all x f 0, 
e +o*. 

Proof. The validity of ‘lheorem 4.1 can be established on the basis of 
formulas (2.311, (2.32) and Theorem 3.1 on the differenti~ility of the 
quantity 7” (n, e), since obviously, for the computation of qo(xlO, . ..) 

Xn())’ C/(Q, **at “& 1, the substitution t = 0 must be made in the 
formulas (2.31) and (2.32). However, we shall also indicate here another 
method for the proof of Theorem 4.1, which is not based on formula (2.31). 
Let us present this proof, 

According to the arguments mentioned above in this section the optimum 
control functions vO(xl, . . . . x,,, 01, [Oba(zl, . . . . x,, 0) can be deter- 
mined from the condition 

l See the remark at the end of Section 3. 
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under the assumption 
n-1 

The solutions of the problems (4.4) and (4.5), obviously, have the 

form 

‘Ihe matrix (3.1) is nonsingular and the vector gradient 1 d To/ax 1 
of the Liapunov function V(Z) = To (x, 0) is different from zero. # ere- 

fore, as a consequence of the differentiability of the function To (r, 0) 

(Theorem 3.1), we conclude from the formulas (4.6) and (4.7), that the 

optimum control functions T]~(x, 0) and toa(,, 0) are continuously diffe- 

rentiable, an arbitrary number of times, with respect to all their 

arguments. This proves the theorem. 

Remark. Equation (3.4) and equalities (4. 6), (4.7) allow us to solve 

the problem of optimum control by reduction of this problem to usual 

variational problems. However, the difficulties which arise here in con- 
nection with the corresponding calculations are very great. This fact 

makes an effective determination of the optimum Liapunov function 

V’ fl(z,, . . . . zn) and, consequently, of the functions qo(x), t,=(x), 
difficult. 

For an approximate construction of the optimum system in the case of 

Problem II the following method can be used. Let U,(X) be a positive- 
definite Liapunov function for the system 

this system a negative derivative. If the 

then such a function u,(x) exists and can 

positive quadratic form. 

(1.91, which has by virtue of 

conditions (1.10) are satisfied, 

be selected in the form of a 

Let us calculate the derivative dvo/dt 

let us select the functions vi(x), sr( X) 
by virtue of system (1.1) and 

from the conditions 

n n-1 ^ 

i.e. 

(4.3) 

(4.91 
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After the substitution of rj = rll, ta= tIa, as given by (4. lo), (4. ll), 
into equations (1.1). we obtain a system which is asymptotically stable 
on the whole. For this system there exists a Liapunov function v,(x), 
satisfying the condition 

dvl(x)/dt=---1 (4.12) 

The existence of the function V,(X) can be proved by the methods of 
inversion of the Liapunov theorems [ 131 (The fact that here x( tf + 6 as 
t+ TO , and not as t -S CM, does not play a decisive role in the problem 
considered concerning the existence of V,(X)). The existence theorems 
for Liapunov’s functions do not give effective methods for the construct- 
ion of these functions. Assume, however, that we succeeded in construct- 
ing a smooth function, the derivative of which by virtue of system (1.1) 
satisfies the condition 

dvi/dts---1 (4.13) 

Compute anew the derivative of the function V,(X) by virtue of system 
(1.11, where 3 = rj2, e” = eza, and determine these function g2, czu from 
the condition 

for 
dv, / dt = min 

n-1 

-f&14) 

(4.15) 

and so on. If in the kth step we had succeeded in an effective construct- 
ion of a smooth Liapunov function v~(x) which by virtue of the system of 
equations, constructed in the immediately preceding step, reasonably well 
approximates the condition 

dv,jdt=--2 (4.16) 

then after a certain number of steps we would obtain a system of equa- 
tions possessing good optimum properties. 

Unfortunately, at present it is impossible to indicate such a general 
effective method for the construction of a smooth function v~(x). satisfy- 
ing completely by virtue (or approximating reasonably well) of 8 known 
system of equations the condition (4.16). One of the methods for such an 
approximation may consist in finding the functions v~(~) in the form of 
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an expansion according to certain functions (for example, trigonometric 
polynomial 9) , approximating the condition (4.16) in the mean. However, 
this method also leads to cumbersome computations. 

5. In this section the limit passage from the solutions of Problem II 
to the solutions of Problem I is investigated for “rp -) 0 (a = 1, . . . . 
n- 1; p= 1. . . . . n). 

7heorem 5.1. If the conditions (1.101, (1.12) and (3.3) are satisfied, 
then for all x the optimum control time T, ['(.sl, . . . . xn) of Problem II 
converges to the optima control time ?',Q f ni, . . . . xR) of Problem I for 
"p" + 0, i.e. 

limI’~~“(r,, . . . , 2,) = TI*(z~, . . - , Q, 2 [ep”]2 -+ 0 (5.1) 
a, e 

holds. 

Proof. According to the results mentioned in Section 2, the optimum 
time Ti(%,, ,.., zn) is to be calculated from equation (2.301, while the 
optimum time T,,(x,, .*., z,) from equation (2.32). 

It follows from these equations that 

T,I @I, - * * ,&&)<T1(x,, - * * ,%I) (5.2) 

(h the other hand, it is obvious that for t = T* = T,O - T, ,’ (where 
AT > 0) we have 

min lpxp = 
-9 (5.3) 

P=1 

and 

limminT[(ii & (~))2+(~ ~*g~(~~)~+*.*~(~ lagp”-qr))apT= 
0 P=1 BE.1 P=l 

n 

= min for epE--+O 
(Z 

lpxp = 
-9 

P=1 

i.e. for sufficiently small values of "p" we have the inequality 
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From the last inequality and inequality (5.21 we conclude that for 

sufficiently small values of e pa the inequality 

T1” - AT < Tllo <T,” 

is satisfied. 'Ihis proves the theorem. 

Rerark. Using the condition (5.11, it is possible to verify that for 

“P 
Q + 0 we have not only convergence of the optimum time T, ,’ + ‘F,’ but 

also convergence in the measure of the optimum control functions po,,+ ‘lo,. 

Theorem 5.1 justifies the following method for the determination of 

optimum control for Problem I: construct an auxiliary system (1.1) with 

sufficiently small numbers e a, 
/“3 

solve Problem II for this system and put 

‘701 = ‘lOI I. As it will be shown in the next section, such a method is 

justified by the fact that for Problem II it is possible to indicate a 

regular method of solution. 

6. In this section a differential equation is derived which allows us 

to determine the optimum control time T”(xi, . . . . x”) and the optimum 

control functions for Problem II*. 

Consider anew side by side the systems (1.1) and (3.21, the last 

system going over into system (1.11 for 8 = 1. As it was shown in Section 

3, the optimum control time To (x,, ,.., xn, 0) is a continuously diffe- 

rentiable function of the parameter 8. In the notations of Section 3 the 

optimum time To ’ 1s to be determined from the condition 

(6.1) 

min 7 (x1, . , x,, II’, 3, l,, . . , In) = -f (x,, . . . , z,, T, 9, 12’, . . . , In’) = 1 
L, . . . ,1, 

where the numbers 1 

in the equality (6. ;i 

'(x, 01, . . . . 
1, 

ZnO(n, 19) which determine the minimum 
are also continuously differentiable functions of 

the parameter 8. Let us make use of this condition for the derivation of 

a system of differential equations, the integration of which will allow 

us to determine the quantities To (x, 01 and 1 Ok, 01. In order to 

abbreviate writing in what follows we shall dr!p the argunents ~0 which 

are assumed to be fixed. Substituting in the equality (6.11 the solutions 

2 

R 
'(01, we shall obtain the following equation for the determination of 

t e implicit function To (0): 

r(T, 9, Zzo(8),. . . ,Zn0(9)) = 1 (6.2) 

In conformity with the well-known formula for the derivative of an 

l In this section, in conformity with the remark in Section 3. we may 

also assume that e a 
B 

are functions of 8, and that e a + 0 for 8 + 1. 
P 
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implicit function, we can write for dT” /de the equal.ity 

(6.3) 

lhe quantities 
for 1 = 1 

1~ ’ determine the minimum of the quantity y. Iherefore, 

2, . ..) 
P 

’ the equalities (3.9) are satisfied, i.e. dy /dZp” = 0 (1-3 = 
n ). Consequently, the function To 63) satisfies the different- 

ial equation 
dT arIaa -z= -p 
d8 a+flaT 

(6.4) 

Substituting T = To (0) into the equality 

7 (T, 8, 120,. . . , Ino) = min 7 (I’, 8, 4, . . . , L) (6.5) 

we obtain n - 1 equations for the determination of the implicit functions 

Ipo : 

Ap = 
a~ (T” (*), 8, ho, . . . . ln”) 

al,pO 
= 0 g3 = 2,. . . , n) (6.6) 

Therefore, in conformity with the well-known formulas for the diffe- 
rentiation of implicit functions [ 101 , we conclude that the functions 

1 
P 

‘(0) must satisfy the system of differential equations 

dZpo (8) D (A,, . . . , A,) /D (ho, . . . , apt . . . ,&“I 
-rzz 

da D (A2, . . . , An) /D (/2’, . . . > I,,‘) 
(9 = 2, . . . , n) (6.7) 

In computing the functional determinants D( Z,‘, . . . . 0p, . . . . 1,‘) in 
the numerator of the equality (6.7), it must be taken into account that 

for the computation of the derivative of A, with respect to 8, the 

quantity To (0) in Aa is assumed to be a known function of 0, i.e. taking 
into account the equality (6.4) in the @th column of these determinants 
the following expressions must be written 

%c ah, dT” aA, 

7x+----= 

aA, ar/as 
--DO aT” d9 as aT ay/arr (a = 2, . . . ) n) (6.8) 

Consequently, for fixed initial values “6 the functions To (0) and 

zpo(e) cp = 2, . ..) n) satisfy the equation (6.4) and the system (6.7). 

lhe system of equations (6.4), (6.7) permits to indicate the following 
method for the solution of Problem II (and also of Problem I by replacing 

it by an auxiliary approximate Problem II)* (see thefootnote on p. 916): 

determine the solutions To (0) and 1 O(O) @I = 2, . . . , n) for 8 = 0 and 
integrate the system of equations ( .4), (6.7) for 0 < 8 \< 1. The solu- 8 
tions To (l), Z@‘(l) Cp = 2, . . . , n) determine the optimum control time 
To and the optimum control functions qo, coa [ according to the formulas 
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(2.31)I.The solutions To (0) and I 

from the conditions (2.31) and (2.. 3$ 

'(0) can be determined very simply 

1, since for 8 = 0 the fundamental 

matrix of solutions F(t) of the system (3.2) is a unit matrix. bations 

(6.41, (6.7) have complicated right-hand sides and cannot be integrated 

in terms of elementary functions. Ihese equations, however, can be in- 

tegrated by means of any one of the known numerical methods. The solution 

of equations (6.41, (6.7) requires cumbersome computations. However, 

this method of solution allows us to circumvent one of the main difficult- 

ies in solving problems of optimum control, namely the necessity of solv- 

ing boundary-value problems. 

In order to obtain the quantities To and n c a in the form of func- 

tions of the coordinates, we can approximate 

a region we are interested in, 

'~'~~, @) and Zp"(x, @> in 

for the purpose of the synthesis of the 

system by a system of orthogonal functions, the coefficients of these 

expansions, being functions of the parameter 8, and derive from system 

(6.41, (6.7) differential equations for the determination of these 

coefficients. 
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